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Abstract

We study the optical response of a suspended, monolayer graphene field-effect transistor structure in
magnetic fields of up to 9 T (quantum Hall regime). With an illumination power of only 3 W, we
measure a photocurrent of up to 400 nA (without an applied bias) corresponding to a photo-
responsivity of 0.13 A W™, which we believe to be one of the highest values ever measured in single-
layer graphene. We discuss possible mechanisms for generating this strong photo-response (17
electron—hole pairs per 100 incident photons). Based on our experimental findings, we believe that the
most likely scenario is a ballistic two-stage process including carrier multiplication via Auger-type
inelastic Coulomb scattering at the graphene edge.

1. Introduction

For many years, the famous paper by Shockley and Queisser from 1961 has been the standard for assessing the
maximum efficiency of semiconductor solar cells [1]. In brief, the main argument is based on the assumption
that photons with energies below the band-gap of the semiconductor are not absorbed while the excess energy of
photons above the band-gap is dissipated as heat and not converted into electric energy. Recently, however, the
Shockley—Queisser limit has been under close scrutiny, as some of the limiting factors may be overcome using
novel, tailored materials and mechanisms, which were not envisioned 50 years ago.

For optical or infrared absorption, the two-dimensional crystal graphene is a promising material, as its
pseudo-relativistic energy—momentum relation E(p) == vg|p|atlow energies (where vg ~ 10® m s~ !isthe
Fermi velocity) gives rise to a broad absorption bandwidth. On the other hand, the absence of an energy gap
seems to rule out the usual mechanism for charge separation in semiconductor solar cells via a built-in electrical
potential gradient, and graphene pn-junctions are challenging to fabricate [2, 3]. Recently, some of us proposed
to employ the magneto-photoelectric effect along a graphene fold or edge to achieve charge separation [4] using
an applied magnetic field B instead of an (applied or built-in) electrical potential gradient, see figure 1(a).

Apart from the high charge carrier mobility and the broad absorption bandwidth, which remains true for the
edge states in a magnetic field, graphene has a number of further interesting properties for magneto-
photocurrent generation. For example, the cyclotron radius of a pseudo-relativistic electronic excitation in
graphene

r >
qB qBvg

e))

with the elementary charge g and an energy E corresponding to, say, room temperature within a magnetic field B
of 4 T (see below) is 6 nm and thus well below the mean free path. Furthermore, in addition to this classical
length scale, the magnetic (Landau) length 3 = /7% /(gB) ~ 13 nm is of the same order—which shows that
quantum effects have to be taken into account. The third advantage of graphene could lie in the relatively strong
Coulomb interaction: in analogy to quantum electrodynamics (QED), we can construct an effective fine-
structure constant in graphene

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematic of the photocurrent measurement. (b) Scanning electron micrograph of the suspended graphene structure,
taken after the measurements. The Ti/Au contacts can be seen as yellow stripes on the left and right hand side. (c) Two-terminal
transconductance as a function of the magnetic field and the gate voltage. Dotted (continuous) lines display filled (half filled) Landau
levels, respectively, calculated from the Landau energy spectrum and the geometric capacitance. Two arrows show the position of
additional plateaus, indicating the splitting of the zeroth level.

2 c 2 c
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and find that this coupling strength Qgraphene is much larger than aqep ~ 1/137 due to ¢/vg ~ 300. Intuitively
speaking, the charge carriers are much slower than the speed of light c and thus have more time to interact. These
comparably strong interactions could be important for the effect of carrier multiplication discussed below. This
mechanism received great attention recently: charge carriers, which are optically excited with a surplus energy,
can relax by exciting electron—hole pairs, effectively turning a single photon into two or more electron—hole pairs
that can drive an external circuit [5-12].

2. Results

Motivated by the predictions in [4], here we experimentally investigate the photocurrent generation in
suspended graphene in a quantizing magnetic field. We start from commercially available chemical vapor
deposition graphene, transferred to a 285 nm SiO,-on-Si substrate. The silicon substrate is highly doped and is
used as aback gate electrode. Using photolithography and an oxygen plasma, the graphene is patterned into bars
of a few pum width, see figure 1(b). Afterwards, Ti/Au (5/100 nm) electrodes are defined by electron beam
lithography. The contacts cover the whole width of the graphene bars and are separated by 660 nm.Ina
subsequent etching step using hydrofluoric acid, ~160 nm of SiO, are removed below the graphene, which
creates a suspended field-effect transistor structure [13, 14]. A scanning electron micrograph of the suspended
graphene (taken after the photocurrent measurements) is shown in figure 1(b).

Our measurement setup consists of a confocal microscope inside a liquid helium cryostat, which allows us to
measure at a temperature of 4.2 K and in magnetic fields of up to 9 T. After cooling down, the graphene is
cleaned in-situ by a current annealing step [13, 15]. To check the quality of the graphene, we perform
transconductance measurements dG/dVpg in different magnetic fields. Here G is the conductance of the
graphene channel and Vpg is the bias applied to the back gate to control the charge carrier density in the
graphene. The resulting Shubnikov-de Haas oscillations are shown in figure 1(c). The Dirac point lies at
Ve = 2V, so that the Landau levels fan out from this point. The expected fan diagram (dotted and solid lines in
figure 1 (¢)) is calculated from the geometric capacitance and the theoretical energy spectrum of single layer
graphene E; = & 2q/wi B j|, where j is the Landau level index. The good agreement with the experimental
data confirms the geometric capacitance and shows that the graphene is suspended in a single layer.
Furthermore, the Landau fan chart extrapolates to £1/2 for electrons and holes, respectively, which is the
fingerprint of single layer graphene (see supplemental information is available online at stacks.iop.org/NJP/19/
063028 /mmedia). Finally, well-developed quantum Hall plateaus confirm the quality of the investigated
sample, see supplementary figure S 1. The Shubnikov-de Haas oscillations can be observed at magnetic fields as
lowas 0.5 T, indicating a mobility of i > 20 000 cm? V~!s~![13]. At magnetic fields above 1 T, additional
plateaus appear, showing at least partial splitting of the zeroth Landau level. This effect is often observed in high-
quality samples and is frequently attributed to electron—electron interactions [ 16—18].

Next we investigate the photocurrent generation in suspended graphene. For this purpose, we use the
confocal microscope and a near-infrared laser with a wavelength’ of 972 nm and a spot diameter of roughly

? The photon energy of 1.28 eV is chosen such that it is much larger than the typical Landau level energy /2q/w# B but still small enough
such that the linear (pseudo-relativistic) dispersion relation E(p) = v¢|p|isa good approximation.
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Figure 2. (a) Photocurrentat B = 5 T as a function of the laser spot position and the gate voltage. The color scale is linear, with white
corresponding to 0 nA. The solid vertical line shows the Dirac point, the dashed line indicates an empty zeroth Landau level. The
picture of the graphene on the right hand side roughly indicates the position of the laser spot. (b) Photocurrent of position A at the
Dirac point as a function of the magnetic field. (c) Gate voltage dependence of the photocurrent for different magnetic fields.

1.5 pm. The illumination power is 3 W and we use alow-impedance (<60 2) current amplifier to directly
measure the photocurrent. The laser spot is positioned in between the two gold contacts.

Figure 2(a) shows the generated photocurrentat B = 5 T, well within the quantum Hall regime. The
photocurrent is found to be symmetric around the Dirac point, but there is a clear change in polarity, depending
on which edge of the graphene is illuminated. This is in agreement with the magnetic-field induced chirality of
the charge-carrier motion (see below).

Without an applied bias, the measured photocurrent reaches surprisingly high values of over 400 nA at the
Dirac point when illuminating the upper edge (position A in figure 2(a)). Considering the illumination power of
3 W, this corresponds to a photo-responsivity of 0.13 A W', a value more than an order of magnitude higher
than reported previously for single layer graphene devices [19, 20] and comparable to the responsivity of
commercially available photodiodes.

The gate-voltage dependence of the magneto-photocurrent at different magnetic fields is shown in
figure 2(c). The photocurrent at zero magnetic field (black line) features a step at the Dirac point, often observed
at pn or graphene-metal junctions, and commonly attributed to thermoelectric effects [3]. For an applied
magnetic field, the step at the Dirac point turns into a peak, whose height and width first increases with
increasing magnetic fields but later (for B > 5 T') decreases again, see figure 2(b).

3. Discussion

Having measured such a strong magneto-photoelectric response, let us discuss possible mechanisms for
generating it. Inserting the incident photon energy of 1.28 eV, we find that the observed photo-responsivity of
0.13 AW corresponds to 17 electron—hole pairs per 100 incident photons. Even if we make the unrealistic
assumption that the entire laser spot illuminates the suspended graphene monolayer, this value seems to
contradict the standard absorption of graphene [25] 0f 2.3%, corresponding to less than 3 generated electron—
hole pairs per 100 incident photons. In the following, we discuss possible mechanisms for this 7-fold increase.

3.1. Enhanced absorption

As one way to resolve this puzzle, one could speculate that the absorption is strongly enhanced for some reason.
For example, the resonant transition between Landau levels can correspond to an effective absorption exceeding
2.3% due to a peak in the density of states (DOS) at resonance [26, 27]. E.g., [26] reports on an absorption
probability of approximately 13% at 4 T for a low lying resonance (between 70 and 80 meV). However, there are
several reasons why we do not believe that the measured strong magneto-photoelectric response (at 1.28 eV) is
generated by such an effect.

The enhanced absorption caused by the peak in the DOS is most pronounced at resonance for low-lying bulk
Landau levels with sharp energies (i.e., without dispersion). However, when sweeping the magnetic field, we did
not observe resonance effects and our incident photon energy of 1.28 eV is comparably large. Furthermore, bulk
Landau levels with sharp energies would not directly generate a current—whereas the observed chirality of the
current points towards edge modes [20], which do show dispersion, i.e., do not have a sharp energy, see
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Figure 3. Sketch of the proposed mechanism in real space (a) and in an energy—momentum diagram (b). In a semi-classical picture (a),
after optical excitation (with aiqgp), the generated primary charge carriers move along curved trajectories until they collide with the
graphene edge (horizontal black line), at which point they can excite secondary electron—hole pairs through inelastic Coulomb
scattering (governed by cgraphene)- This Auger-type process is depicted in (b) within the energy dispersion diagram of the edge
channels.

figure 3(b). Finally, for magnetic fields of 1 T, for example, the relevant Landau levels do not fit into our sample
because their cyclotron radius rin equation (1) exceeds half the distance between the metal contacts”.

In appendix A.2, we present a calculation of the photon absorption into the relevant edge modes of
graphene, based on linear response theory, which shows that the edge modes cannot absorb 17% of the incident
laser light. In fact, the total absorption into the edge modes is somewhat reduced below 2.3%. We also estimated
the near-field enhancement due to the metal contacts via a Maxwell solver (see supplemental information). Even
though the electromagnetic field is affected by the presence of the metal contacts, this modification cannot
account for the measured strong current.

3.2. Thermoelectric effects

As another way to explain the surprisingly large photocurrent, we consider the scenario that the laser heats up
the metal contacts, which then induces thermoelectric effects at the graphene-metal junction [3]. While this
effect could explain the step near the Dirac point in figure 2(c) at zero magnetic field, we are mostly interested in
the peak of the current around the Dirac point at large magnetic fields (5 T, for example). The distinct
dependences on gate voltage, laser polarization and laser spot position suggest that the zero-field and the large-
field signals are caused by different mechanisms.

First, the broad peak of the large-field signal at the Dirac point is in strong contrast to the expected behavior
(step at the Dirac point and oscillatory away from it) of usual (diffusive) thermoelectric effects in the quantum
Hall regime [21-24]. Second, this large-field signal assumes its maximum for a laser polarization in y-direction
(see supplemental information), while the heating of the metal contact should be most efficient for a laser
polarization in the other x-direction. Third, when varying the y-position of the centre of the laser spot, the zero-
field signal vanishes in the middle, where both contacts are illuminated equally strong (see supplemental
information). In contrast, for high B-fields, the signal assumes its maximum in the central y-position (see
supplementary figure S 4), while it changes its sign when varying the x-position of the laser, see figure 2(a), as
expected for the magneto-photocurrent mechanism discussed below. Altogether, the dependence of the high
magneto-photocurrent on the y-position of the laser spot centre (distance to the metal contacts) shows that it is
not caused by the metal contacts while the x-dependence (distance to the edges) shows that it is an edge effect.

3.3. Magneto-photocurrent
As explained above, we do not believe that the observed photo-responsivity of 0.13 A W~! at large magnetic
fields can be explained by an enhancement of the absorption or the aforementioned thermoelectric effects. Thus,
we consider in the following that the incident photons create a small number of primary particle-hole
excitations directly—which then generate secondary particle-hole pairs via charge carrier multiplication, see
figure 3. Carrier multiplication in graphene is promoted by its large effective fine-structure constant, as
mentioned above. It has been theoretically predicted and experimentally observed in the past [10-12].

Since the wavelength of those primary electron or hole excitations A ~ 7 nm is much smaller than all other
relevant scales, the universal absorption probability maqep ~ 2.3% should be a reasonable zeroth-order

* Note that the wave functions of the bulk Landau levels (corresponding to full circular orbits) are more spread out than those of the chiral
edge states, which correspond to skipping orbits (see figure 3(a)) containing circular segments only and thus can be much more localized.
Hence, even if bulk Landau levels do not fit into our sample, it can still support chiral edge states.
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approximation (see also appendix A.2). With this probability, the incident photon of energy ~1.28 eV createsa
pair of an electron and a hole with equal energies of E = 0.64 eV and opposite momenta due to energy—
momentum conservation.

However, the momentum of the electron (or hole) can point in both directions with equal probability and
thus no net current is generated at this stage. Since the wavelength of the electron or hole excitations A ~ 7 nm
is much smaller than the classical cyclotron radius (1) of r ~ 0.15 um at4 T, we can treat the propagation semi-
classically. Thus, the electron and hole excitations describe circular trajectories with the cyclotron radius (1)
until they reach the metallic contacts or they are scattered by defects or the graphene edge. A net current is
induced when at least one of the carriers is reflected at the graphene edge, where the originally random direction
of charge separation is transformed into a determined directionality/chirality as in figure 3, where holes move to
the left and electrons to the right. The current runs into opposite directions at the upper and lower edge, which
explains the position dependence in figure 2(a). This simple picture also accounts for the observed dependence
on the magnetic field: if the magnetic field is too small, the radius (1) is much larger than the distance between
the metallic contacts and thus the trajectories are not bent enough to control (rectify) the direction of charge
separation efficiently. For intermediate field strengths of around 4 T, the circular diameter of 0.3 pm fits well
into the graphene sample and thus (directed) charge separation is most efficient. If the magnetic field becomes
too large, however, this diameter shrinks and thus the incident photon must be absorbed very near the edge
when the circle is supposed to intercept the edge—i.e., the effective absorption area shrinks.

3.4. Charge carrier multiplication

However, as explained above, these primary electron—hole pairs (directly created by the incident laser photons)
cannot account for the observed current. In order to explain the generation of secondary electron-hole
excitations, a natural candidate is carrier multiplication via inelastic Auger type scattering at the graphene edge.
Neglecting dielectric and screening effects in our order-of-magnitude estimate, we consider the Coulomb
interaction Hamiltonian

A _ @ (g (g PEOPED
Heoulomb = 5 fd rfd r > 3)

dreg|F — 7|

with the charge density operator p(7') = QAﬁT 7) - fb(?), where 12) (7) is the two-component (spinor) field
operator. In principle, this nonlinear interaction Hamiltonian could also induce carrier multiplication in
translationally invariant (bulk) graphene. However, this process is strongly suppressed in analogy to QED where
ahigh-energy photon alone cannot create electron—positron pairs: when an electron is scattered inelastically
from ki, to Koue While creating a secondary electron—hole palr with k+ and k_, the energy—momentum
conservation together with the linear dispersion relation E (k) ~ Jive| k| implies that all these wavenumbers
must be parallel Ky, || Koy || ||K_ such that the phase-space volume is basically zero. This suppression can be
diminished by the coupling to phonons, defects, or a magnetic field, etc., and carrier multiplication has been
observed in such scenarios [10—-12, 28].

Here, we consider the inelastic reflection at the graphene fold or edge (see figure 3) where the perpendicular
momentum is not conserved and thus we expect carrier multiplication effects. Via standard perturbation theory
with respect to the interaction Hamiltonian (3), we calculate the probability for Auger-type inelastic scattering
of a primary excitation from its initial wave function ¥y, to 1o, while creating a secondary electron—hole pair
with P2t and 1)"°!¢ (see appendix A.1). Up to a dimensionless integral (which can be evaluated numerically), we
find that this probability 2 = Cf‘(aémphene) scales with the squared coupling constant in equation (2). Inserting
realistic values, we get decay rates (probabilities per time) of several THz. As a result, the primary excitations
should be able to create many secondary particle-hole pairs before reaching the metal contact—consistent with
our observations.

The presented theoretical model—ranging from the creation of primary electron—hole excitations by the
incident photons and their subsequent propagation on circular orbits up to the generation of secondary
electron—hole excitations via inelastic (Auger-type) scattering at the graphene edge/fold, see figure 3—matches
the observations, including the dependence on laser spot position and magnetic field, quite well. The gate-
voltage dependence can also be understood within this picture: deviations from the Dirac point reduce the
available phase space for the generation of secondary electron—hole excitations since the required energy
increases. Note that only Auger-type electron—hole excitations from a downward to an upward sloping
dispersion curve contribute to the net current because the current is determined [4] by the group velocity
dE /dk)in figure 3(b).
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3.5. Conclusions
Motivated by our previous prediction [4], we have observed a surprisingly high magneto-photocurrent in
suspended graphene. The observed photo-responsivity of 0.13 A W™ corresponds to 17 electron—hole pairs per
100 incident photons, which we believe to be one of the highest values ever measured in single-layer graphene.
We discuss possible mechanisms for generating such a strong photocurrent and come to the conclusion that
atheoretical model based on charge carrier multiplication via inelastic scattering of primary photo-generated
excitations at the graphene edge describes the observations best. The number of created electron—hole pairs per
absorbed photon (/7) exceeds most of previous observations of charge carrier multiplication in graphene as
well as in any optically excited semiconductor system so far [5—12]. The effectiveness of this process can mainly
be attributed to three factors:

(a) the comparably strong Coulomb interaction quantified by cgraphene > QD>
(b) the enlarged phase space due to the lifting of the transversal momentum conservation at the fold or edge,

(c) the robust chiral edge states in a magnetic field, which ensure that basically all secondary carriers generated
at the edge will contribute to the photocurrent.

Of course, this theoretical model is based on our current data and understanding, while more experimental
and theoretical investigations are needed to fully comprehend the underlying mechanism. In any case, our
findings show that graphene with its high carrier mobility and broad absorption bandwidth is a very promising
material for photo-electric applications.
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Note added

After completing the work reported on in this manuscript, we became aware of a recent similar work on
graphene—boron—nitride heterostructures by Wu et al [29].

Appendix

A.1. Estimate of carrier multiplication probability

In order to obtain a rough estimate for the carrier multiplication probability, we use first-order perturbation
theory and start from the Coulomb interaction Hamiltonian (3), neglecting effects due to screening and the
dielectric permittivity. In principle, one could have Coulomb interactions between different Dirac points, but
here we shall focus on carrier multiplication effects within the vicinity of one Dirac point only. In this
approximation, the charge density operator p(¥') = @T (7) - 1 (F) is effectively given by the two-component
(spinor) field operator (7). Close to the Dirac point, this effective spinor field satisfies the Dirac equation
(i=1

iy"(0, + iqA,) - ¢ = 0, (4)

with x* = [vgt, x, y]and the Dirac matrices v* = [07, i0?, —io*¥].

In order to specify the geometry, we consider a straight graphene edge with zigzag boundary conditions in
the presence of a constant transverse magnetic field B. However, as one may infer from the arguments below,
other geometries (such as a graphene fold, see [4]) yield the same order of magnitude. In the Landau gauge, the
vector potential for a constant magnetic field B perpendicular to the graphene sheet adopts the form
A, = [0, 0, Bx]. We consider a graphene sheet which is infinitely extended in the y-direction and terminated by
azigzagedgeatx = 0. Then, stationarity and translational invariance in y-direction allows us to employ the
separation ansatz for the (unperturbed) eigenmodes of the Dirac equation

PR (8, x, y) = e B PR (x), Y (x)] e, 5)

where the two quantum numbers #n € N and k¥ € R specify the dependence on x and y, respectively. Note that
the eigenenergies E,, ;» can be positive (particle states) as well as negative (hole states) and even zero (zero mode),
see below. Insertion into equation (4) yields the coupled set of equations

6
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Figure Al. Dispersion relations of the edge modes in graphene with zigzag-boundary in a constant magnetic field for the lowest
quantum numbers |n| < 8.

: nk’ Enpr
—i(0 + K + gBx)yhF = 2 gk, ©)
VE
: nk” Eﬂ,ky nk?
—i(0y — K — gB)yY"" = - ™)
F

while the zigzag boundary condition is included via the requirement ¢"¥" (x = 0) = 0, see, e.g., [30-32]. The
solutions can be expressed in terms of parabolic cylinder functions D,, via

\/EVF

n,k’ B

PP (x) = Now Dot (N2 65K + N2x/6), ¥3% (x) = iNyw D,(N2k'ts + 2x/6),  (8)
with theindex v = E;,£3/(2v¢) and a suitable normalization constant N, . This index v7and thus the
eigenenergy E,, p» is determined by the zigzag boundary condition ¥"¥ (x = 0) = 0 which implies that we must
have a zero of the parabolic cylinder functions D, at the edge where x = 0. For k¥ — —o0, we recover the usual
bulk Landau levels with E,, x» — /211 vg /£, while in the other limit k¥ — -+ o0, the dispersion relation
becomes approximately linear E,, ;» /k” =~ £vy, see figure Al.

A particular feature of the zigzag boundary condition is the appearance of a zero-energy mode. It possesses
only one non-vanishing spinor component, namely 3% (x) = Ny ;» exp (—k”x — x2/[2£2]). The expansion of
the field operator in terms of the (unperturbed) spinor-wavefunctions reads

bt 7 = [l SR D + Ui byl + [ dRon (I, ©)
n=1

where d,, ;» and l;n’ky are the annihilation operators for particles (E, y» > 0)and holes (E, x» < 0), respectively,
while ¢5"° corresponds to the zero mode.

In complete analogy to Fermi’s golden rule, we estimate the probability (per unit time) for secondary
particle—hole pair creation via time-dependent perturbation theory. The initial state |[in) = |k, n;,) is the state
of an incoming particle with k. and ;. Via inelastic Auger-type scattering at the graphene edge, this incoming
particle can be reflected to an outgoing particle state with kJ, and n,,, while creating a secondary particle~hole

pair with the quantum numbers kg’art and #1p,,, as well as k| and 1,016, respectively. Hence the final state is

givenby |out) = |kdy Mouts Kgare Mparts Kilgje> Mhole)- T first order, the relevant matrix element is given by
M (in — out) = —i f dt {out] Hcouoms () |in). (10)

The time-dependence in Hcoutoms (1) reflects the unperturbed dynamics (interaction picture) from equation (4)
and is encoded in the usual oscillating phase factors exp { FiE,, it} in the mode functions in equation (9).

After inserting the relevant expressions, the t-integration yields a Dirac 6-function corresponding to energy
conservation (as expected)

& = E(ké/uta Nout) + E(k})l/ole) Mhole) + E(ké}art’ npart) - E(ki)r/p 1in) = 0. (11)

The integrations over y and y’ can also be performed analytically. As usual, it is convenient to transform the
variables 7 and 7/ to center of mass 7. = (¥ + 7/) /2 and distance 7. = 7 — 7’ coordinates. The integration
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over y, = (y + y’)/2yields momentum conservation in y-direction while the integral over y = y — y'can
be expressed in terms of the modified Bessel function of the second kind Ky (|x — x/[|k2,. — k/i]). Note that, for

part
given momenta k/ and kZ;

oA out and quantum numbers #out, Mholes Mpart> a0d 1ip, the other wavenumbers k. and

k/ . are fixed by the conservation of energy and momentum in y-direction.

The remaining integrals over x,. can be cast into a scale free form by introducing the dimensionless variables
X+ = x4 /¢pandanalogously Koy = kJ, 75 etc. In this way, the total probability per unit time (in analogy to
Fermi’s golden rule) can be written as

P(nin) kl)lfl — Nout> T’lpart, Tlhole) _ E az fdl‘i()ut Ijlz (12)
T fB graphene |W|
Here 7" denotes the dimensionless weight factor (corresponding to the DOS)
1 d
= a {& | ku—k 4k — K =0)6 =0 3
out

with & from equation (11). The dimensionless integrand .# represents the matrix elements in equation (10)
7 = [ax Kol Msow = minb) [dx, FOc 10, (14)

where the function F (x,, x_) = F(x, x') is decomposed of bi-linear forms of the parabolic cylinder functions
in equation (8), evaluated at x and x/, respectively.

The main point is that the decay rate (probability per unit time) in equation (12) is basically set by the
characteristic frequency scale vi /£ times aémphene, because the remaining integration over all final wave-
numbers K, as well as the x| -integrals in .# involves only dimensionless quantities of order unity. Apart from
the overlap of wave-functions which can be extremely small for certain parameters, these integrals do neither
contain very small nor very large numbers which could lead to their suppression. The three remaining
integrations (y, and ko) can be done numerically for a given set of parameters (12, k;k — Mouts Mparts Mhole)-

In order to study an explicit example, we consider a magnetic field of B = 5 T corresponding to £ = 11 nm
and £ /vp = 11 fs. As a suitable initial state, we choose n;, = 10 and k;, £z = 6.35 which corresponds to an
energy of E, = 0.64 eV. The decay rate of this initial state into the final states 71,y = 9, 0 = 1,and
hole = 0, for example, can be estimated by numerically integrating (12) and is given by

P(nj, = 10, kl},; = 635/£B — fout = 9, Mpart = 1, fipole = 0)
T

~ 32ps L (15)

Note that this decay channel is only available if the relevant zero mode was occupied initially such that one is able
to transfer an electron from this mode to the mode 71,,,y = 1, thereby creating a hole with np,4le = 0. However,
the decay rate for the opposite process, i.e., with f15,¢ = 0and 01 = 1, is nearly the same. In these processes,
the zero mode acts as a reservoir for absorbing momentum (in the y-direction) without any energy cost. The
probabilities for channels not involving the zero mode are somewhat smaller, e.g., for 1., = 8 and

Npart = fpole = 1, weget P/T ~ 3.1 ps~! for the same initial state. This suggests that phase-space arguments
due to energy-momentum conservation play an important role for suppressing the carrier multiplication
probability. The graphene edge lifts momentum conservation in x-direction, and thus facilitates strong carrier
multiplication. Further enhancement will emerge when the phase space is also not restricted by momentum
conservation in y-direction. This may result from the aforementioned zero mode or from inhomogeneities such
as cracks or other defects that are typically found at the graphene edge.

If we remember that an excited particle typically spends a time of order picoseconds in the graphene sheet
before reaching one of the metal contacts, we see that there is ample time for carrier multiplication. In fact,
owing to the largeness of crgraphene, the above decay rate is so big that one might wonder whether first-order
perturbation theory is applicable in the given situation. However, even though first-order perturbation theory
may not be very accurate, one would expect that it reproduces the correct order of magnitude and shows that the
probabilities are certainly not negligible. Quite analogous arguments can be applied to other geometries, such as
agraphene fold, see [4], and demonstrate that the decay rates have a comparable order of magnitude—especially
when the curvature radius of the fold is of the same order as £ (which is the relevant case here). Thus, even
though the above derivation is based on a specific idealized geometry, the scaling arguments following
equation (12) and the robustness of the chiral edge modes—which exist quite independently of the precise
character of the boundary conditions at the edge or fold— indicate that other geometries yield qualitatively
analogous results and the same order of magnitude.

A.2. Estimate of light absorption
In order to estimate the creation of primary charge carriers in the relevant edge modes of graphene, we treat the

laser field as a classical field Xlaser (t). Then we may derive the generated current <f (t, 7)) via standard time-

8
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Figure A2. Photon absorption probability as a function of distance x to the edge for two linear laser polarizations: parallel to the edge
(blue) and perpendicular to the edge (black).

dependent perturbation theory in first order of the interaction Hamiltonian
Hlaser =4 fdzr ] . Alaser: (16)

which gives the Kubo formula
. . ! v 2 an P o
G 2o =g [ [ AL P, 4,06 F )l (17)

where the unperturbed expectation value of the commutator ([ ], (', 7/), ]; (t, 7 )])o isrelated to the
conductivity tensor o}, If we focus on one spin component and one Dirac point, the current density ]; isrelated

to the spinor field operator 0 via
PR = v, ) A P F) = v (G F) A0 P F) = ved) (6 F) - 0F AR D, B). (18)

In analogy to equation (9), the spinor field operator ¢ (t, 7 ) can be expanded into creation and annihilation
operators multiplying the mode functions corresponding to a given scenario. If we insert the standard plane

. . . . L=
waves for planar graphene without any magnetic field, a comparison of the laser intensity ocEj,, and the

absorbed energy density o Ejyser - (] ) due to the generated current (j ) yields a photon absorption probability of
maqep /4, which—after taking into account both spin components and the two Dirac points—reproduces the
well-known universal absorption probability of maqgp. Similarly, inserting the mode functions (and eigen-
energies) of the bulk Landau levels in planar graphene with a constant magnetic field reproduces the resonant
transitions between them.

Here, we insert the mode functions of the edge modes (8) as in equation (9) in order to describe the light
induced excitation of edge modes, using the same values as above, i.e., B = 5 T correspondingto £z = 11 nm
and ¢ /vp = 11 fs. Note that the photon energy of 1.28 eV considered here is not resonant to any transitions
between bulk Landau levels, such that we only have absorption into the chiral edge states (which contribute to
the current). The resulting photon absorption probability as a function of distance to the edge is plotted in
figure A2 for the two linear photon polarizations (parallel and perpendicular to the edge).

Very close to the edge, both polarizations show a peak around 3% which is caused by the zero mode ¢5™ in
equation (9) but can be neglected in the total integrated probability. Apart from this peak (which vanishes if we
remove the zero mode) and some small scale oscillations, the probabilities start at a value of 2.3% or somewhat
belowatx = 0and decrease for larger distances x until they basically vanish around x ~ 20 £3. Thisis
consistent with the semi-classical picture in section 3.3 since the diameter of a classical (pseudo-relativistic)
circular orbit with an energy of 0.64 eV (i.e., half the photon frequency) at 5 T isaround 21 ¢5. Even the
polarization dependence observed in figure A2 can be explained within this semi-classical picture, because the
particle-hole pairs are predominantly emitted perpendicularly to the photon polarization. Thus, for photons
absorbed very close to the edge (small x), the probability of creating an edge state (corresponding to a skipping
orbit) is near unity for a laser polarization parallel to the edge, but reduced for perpendicular polarization (since
the circular orbit could be directed away from the edge—which would not contribute to the current). On the
other hand, for distances approaching the cyclotron diameter of around 21 ¢, the point where the photon is

9
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absorbed should lie close to the ‘north pole’ of the circular orbit (as in figure 3 (a)) in order to facilitate an edge
mode (i.e., skipping orbit), which favors perpendicular polarization.

Scaling arguments very similar to those in the previous section A.1 show that other geometries (such as a
graphene fold [4]) or boundary conditions (such as armchair) lead to analogous behavior and the same orders of
magnitude, even though the details (e.g., selection rules regarding the photon polarization, see [4]) can be
different.
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